Memphis Light Gas and Water (MLGW) Operational and Organizational Assessment

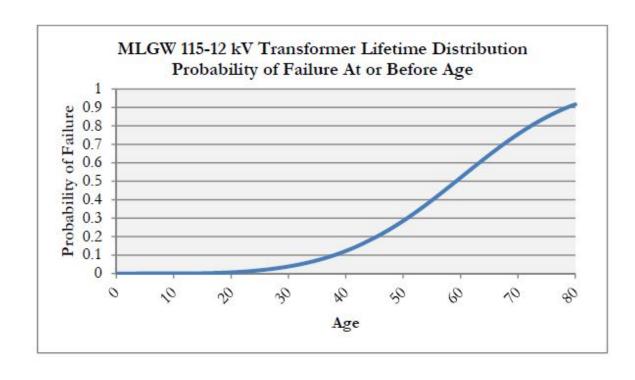
City Council Presentation

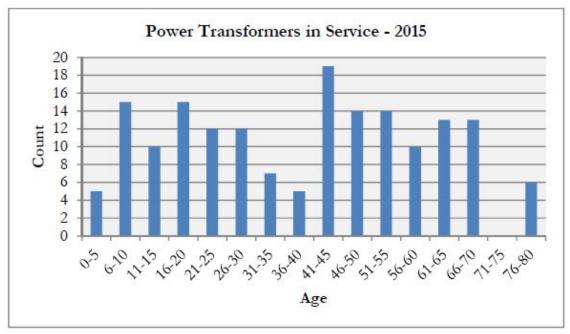
Baker Tilly and HDR

Baker Tilly and HDR have years of experience helping utilities and other public sector organizations with conducting infrastructure reviews and operational and organizational assessments. We are intimately familiar with best practices, effective use of technology and sound internal controls across utility departments.

Our utility client list includes:

- -Black Hills Energy
- -Detroit Water and Sewerage Department
- -Duke Energy
- -Grand River Dam Authority
- -Gainesville Regional Utilities
- -Lower Colorado River Authority
- -New Orleans
- -Orlando Utilities Commission
- -Sacramento Municipal Utility District
- -San Francisco Public Utilities Commission


Key Project Takeaways


	We recommend MLGW and the City of Memphis take immediate action to implement infrastructure improvement programs; deferred infrastructure investment has created urgent needs in order to maintain reliable service.
	Further delay may result in:
[☐ Critical infrastructure failures leading to interruption in service
[☐ Increased implementation costs
[Reduced ability to apply temporary fixes
	Operational improvements can be implemented with the intention to:
[☐ Realize cost savings
[☐ Enable effective implementation of infrastructure improvement programs

Electric Infrastructure Risk Register

Risk Statement	Probability	Impact	Exposure
Asset Affliation	(1,2,3,4,5) Probability of event (1 = lowest).	(1,2,3,4,5) Estimate severity of the risk.	Probability x Impact.
Condition Assessment Ris	ks		
Transformer Capacity	2	4	8
Asset life	3	4	12
Open Wire Secondary	5	2	10
Wood Pole Replacement	5	2	10
Underground Replacement	5	2	10
Operational & Commission	ning Risks		
Grid Modernization	2	5	10
Vegetation Management	4	3	12
Design Standard Risks			
Electronic Controls	3	4	12

Power Transformers

Vegetation

Gas Infrastructure Risk Register

Risk Statement	Probability	Impact	Exposure
Asset Affiliation	(1,2,3,4,5)	(1,2,3,4,5)	Lxposure
	Probability the risk will occur (1 = lowest) . Estimate severity of the risk.		Probability x Impact
Condition Assessment Risk			
Regulator Stations	4	3	12
Vault Replacement	3	4	12
Rectifier and Anode Bed	3	5	15
Steel Service Replacement	4	3	12
Casing Replacement	4	4	16
PVC Replacement	5	3	15
Cast Iron Replacement	5	3	15
Operational Risks			
SCADA Communications	4	2	8
Pipeline Re-Classification	2	2	4
ILI Inspection	2	4	8
MAOP / Material Verification	2	4	8
Document Management	4	3	12
Safety Risks			
Lead Abatement	2	2	4

Obsolete Equipment

MASTER PLAN MLGW's Natural Gas System

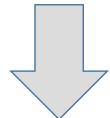
2020 - 2024

Water Infrastructure Risk Register

Risk Statement	Probability	Impact	F
Asset Affiliation	(1,2,3,4,5)	(1,2,3,4,5)	Exposure
	Probability of event (1 = lowest) .	Estimate severity of the risk.	Probability x Impact.
Condition Assessment Risl	ks		
Pumping Stations	4	3	12
Pumping Stations	5	3	15
Pumping Stations	4	3	12
Facility Resiliency	4	3	12
Equipment Repair	4	3	12
Maintenance Tracking	3	3	9
Pumping Stations	3	3	9
Pumping Stations Electrical	4	2	8
Booster Pumping Stations	4	2	8
Operational Risks			
Well Capacity	4	4	16
Key Facility Resiliency	4	3	12
Growth Area Supplies	4	3	12
Standard Processes	4	2	8
Renewal Processes	3	2	6
Renewal Processes	3	2	6
Operational Approach	3	3	9
Operations Capacity	3	3	9

Water Infrastructure Risk Register (cont.)

Risk Statement	Probability	Impact	Exposure		
Asset Affiliation	(1,2,3,4,5)	(1,2,3,4,5)	Exposure		
	Probability of event (1 = lowest) .	Estimate severity of the risk.	Probability x Impact.		
Safety Risks					
Electrical Safety	4	3	12		
Operational Safety	3	3	9		
Lead//Asbestos Safety	2	2	4		
Structural Safety	1	5	5		
Safety Assessment	2	4	8		
Engineering / Design Risk	ks				
VFD Designs	3	1	3		
Pump Hydraulic	4	2	8		
Model Refinement	4	3	12		
Control Replacement	3	2	6		
District Metering	2	3	6		
Main Replacement	3	2	6		
Asset Priority	3	2	6		



	PLANT DETAILS (MGD)									
	Mallory	Sheahan	Allen	Lichterman	Morton	Davis	McCord	Shaw	LNG	Palmer
AVG DAY	11.6	9.8	12.8	16.1	13.0	14.4	14.5	17.7	0.5	3.6
PEAK DAY	15.6	15.4	15.0	22.2	15.7	18.4	16.3	21.3	0.6	4.8
RATED PLANT CAPACITY	35.0	35.0	30.0	30.0	30.0	30.0	35.0	30.0	1.1	5.5
AVG DAY (%)	33.2	28.1	42.6	53.6	43.4	48.0	41.4	58.9	46.4	66.0
PEAK DAY (%)	44.6	44.1	50.2	73.9	52.4	61.4	46.5	71.1	58.4	86.4
WELL RELIABILITY CLASS 1-2	18.0	18.5	13.4	8.2	24.6	13.6	15.9	32.6	-	-
WELL RELIABILITY CLASS 3	7.4	16.4	7.4	21.2	-	6.6	7.0	-	2.4	5.1
ASSESSED WELL RELIABILITY	19.9	24.9	15.8	18.0	22.1	15.5	17.8	29.3	1.2	2.6
FILTER CAPACITY W/ OOS	35.0	35	Rated	System Ca	pacity –	261 M	GD	22.5	1.2	5.5
HSP ON-LINE CAPACITY	35.0	15 Rel		ystem Deliv				21.0	1.1	5.5
FACILITY RELIABLE CAPACITY ³	19.9	15.0	15.8	17.6	22.1	15.5	15.0	21.0	1.1	2.6
RELIABILITY / RATED CAPACITY	0.6	0.4	0.5	0.6	0.7	0.5	0.4	0.7	1.0	0.5
AVG DAY (%)	58.4	65.5	80.9	91.4	58.9	92.8	96.5	84.1	46.4	2 139.6
PEAK DAY (%)	78.5	102.8	95.2	125.9	71.1	118.8	108.5	101.6	58.4	182.8

Comparable Water Utilities

- > Similar age of many key assets (production facilities were built around same time)
- Similarity of distribution network age and materials
- Regional compatibility from regulatory to economic factors
- Service area population

Utility	Production Capacity	2018 Water Delivered to Mains	2018 Average Daily Pumpage	2018 Maximum Daily Pumpage	No. of Customers	Service Area Size	2018 Operating Expense	2018 Water Revenue	2018 Capital Expenditures	Projected Bud (\$00	get
	MG	MG	MGD	MGD		(miles of main)	(\$000s)	(\$000s)	(\$000s)	2019	2020
Louisville Water	240	43,570	119	152	316,482	4,233	137,624	191,998	111,000	105,000	-
Cincinnati Water	260	44,184	121	157.2	240,336	3,176	75,980	147,519	83,790	85,864	89,063
City of St. Louis	380	43,500	119	-	92,188	-	50,036	55,779	-	+	-
New Orleans	250	54,140	146	-	135,000	1,834	106,761	\$109,900	72,487	48,343	115,000
Columbus	255	48,800	134	-	278,139	3,541	113,447	198,982	87,500	149,473	165,440
Memphis	261	43,500	119	144	254,000	3,943	50,600	103,000	32,340		

- > Per customer revenue is lower than all comparable utilities
- > Per customer operating and maintenance expenses are lower than all comparable utilities
- Capital investment as a percentage of revenue is <u>lower</u> than all comparable water utilities
- Capital investment as a percentage of customer base is lower than all comparable utilities

Operational Improvements and Cost Savings

□ Reductions in staff: up to \$30M-\$35M
 □ Community office closures: up to \$7M
 □ FMLA process improvements: up to \$600K
 □ Meter opt-out cost recovery: up to \$2.5M
 □ Additional opportunities:
 □ Workers' Comp reduction: up to \$70k
 □ Commercial Residential Engineering cost recovery: up to \$55k

Operational Improvements with Potential Cost Savings

☐ Procurement process redesign and higher approval limits
☐ Enhanced inventory management and reduction in carrying
costs
☐IT portfolio management and strategic planning
☐ Remediation of system issues
☐ Cloud storage
☐ Improved fleet management
☐ Human capital management (classification and
compensation, succession planning, etc.)

Low Priority Focus Areas

Due to the timeline of this engagement, the observations below could not be explored in detail; however, MLGW is encouraged to explore these observations further in cases where there may be additional cost reduction, revenue, risk mitigation, or strategy.

